痛风可以喝什么饮料| 高血压需要注意什么| 柳絮是什么| 坐骨神经痛是什么原因引起的| 轻度脑梗吃什么药最好| 喝蜂蜜水有什么好处| 冷酷是什么意思| 九月一日是什么星座| 挑疳积挑出来的是什么| 葡萄不能和什么一起吃| 许久是什么意思| 细菌属于什么生物| thenorthface是什么牌子| 眉什么眼什么| 戒指丢了暗示着什么| ysl是什么牌子| ktv是什么意思| 什么花不用浇水| 西梅不能和什么一起吃| 吃什么补阴虚最好| 月经不能吃什么东西| 吃姜有什么好处| tf是什么| 月经前有褐色分泌物是什么原因| 姐姐的孩子叫我什么| 前列腺用什么药| 吃完饭就打嗝是什么原因| 昙花一现什么意思| 1.14是什么星座| 尿比重偏高是什么原因| 6月7号是什么星座| 什么星座最疼射手座| 食指戴戒指是什么意思| 天下乌鸦一般黑是什么意思| 李白有什么之称| 舌吻会传染什么病| 棉涤是什么面料| barry什么意思| alba手表是什么牌子| 吃芒果有什么好处和坏处| 绿豆煮出来为什么是红色的| 海为什么是蓝色| 外阴干裂用什么药| 小叶增生是什么症状| 吃雪燕有什么好处| 肾上腺结节挂什么科| 什么名字最霸气| cr医学上是什么意思| 阿昔洛韦片是什么药| 生蚝什么时候最肥| 什么是脱敏治疗| 宝宝缺钙吃什么补得快| 眼睛干涩用什么药| 安全监察是一种带有什么的监督| 筋膜炎挂什么科| 蒲地蓝消炎片主治什么| 冬眠是什么意思| 角的大小与什么有关与什么无关| 老年人腿疼是什么原因引起的| 什么情况下要打狂犬疫苗| 孕期小腿抽筋什么原因| 庞统为什么叫凤雏| 爬虫是什么| 如意丹的作用是什么| 血卡是什么| 老年人腿肿是什么原因引起的| 什么叫游走性关节疼痛| 什么人不能吃蚕豆| 肃穆是什么意思| 交织是什么意思| 无花果是什么季节的水果| g750和au750有什么区别| 失心疯是什么意思| 阴历六月十八是什么日子| 为什么脸上长痣越来越多| 5月17日是什么星座| 梦见自己给自己剪头发是什么意思| 拆台是什么意思| 莀字五行属什么| 什么好| 九加虎念什么| 521是什么星座的| 天麻种植需要什么条件| 吃海参有什么功效| 二甲医院是什么级别| 身体有异味是什么原因| 活性酶是什么| 半路杀出个程咬金是什么意思| 梦见老鼠是什么预兆| ls是什么牌子| 副处级干部是什么级别| 香精是什么东西| 属鸡的是什么星座| 三千烦恼丝什么意思| 刮痧板什么材质的好| 县团委书记是什么级别| 浅表性胃炎伴糜烂吃什么药效果好| 尿蛋白可疑阳性是什么意思| 频繁流鼻血是什么原因| 赶集是什么意思| 喝中药尿黄是什么原因| 枇杷什么味道| 舌头发涩是什么原因造成的| 抹茶是什么意思| 木瓜有什么功效| 11月28日是什么星座| 中国黄金为什么比其它金店便宜| 吃葡萄对身体有什么好处| hcg值高说明什么| 什么样的人容易得脑梗| 为什么医生都不体检| 迎春花什么时候开花| 逼上梁山什么意思| 什么叫猥亵| 锑是什么| 慢性扁桃体炎吃什么药| 思维跳脱是什么意思| 为什么有胎记| 经常头晕吃什么食物好| 缺铁性贫血吃什么补得快| 排尿困难是什么原因男性| 11月14日什么星座| 梦见别人开车翻车是什么预兆| 痞闷什么意思| 尿蛋白可疑阳性是什么意思| 胆汁是什么颜色| 为什么会得脑梗| 人什么什么事的成语| 梦见吃老鼠肉是什么意思啊| 旗舰机是什么意思| 喝普洱茶有什么功效| 正常龟头什么样子| 脊柱侧弯拍什么片子| 生肖龙和什么生肖最配| 谷草谷丙比值偏高说明什么| 头皮癣用什么药膏最好| 发热挂什么科| 老是干咳嗽是什么原因| 梅子是什么水果| 肉桂茶适合什么人喝| 头皮上长疣是什么原因造成的| 胸闷气短吃什么药效果好| 什么叫飞机杯| 新生儿出院回家有什么讲究| 橙花是什么花| 斗智斗勇什么意思| 药吃多了会有什么后果| 雍正为什么不杀十阿哥| 托帕石是什么| 犹太人是什么意思| 里急后重吃什么药| 起死回生是什么生肖| 属鸡的女生和什么属相最配| 上皮内瘤变是什么意思| 女人叫床最好喊什么| 绿色心情是什么意思| 什么是菜花状疣图片| 总是想睡觉是什么原因| 嗔恨是什么意思| 水加日念什么| 后背发冷发凉属于什么症状| 憨是什么意思| fpd是什么意思| 宝宝拉肚子吃什么药好得快| 杨八妹属什么生肖| 月季花什么时候开| 艾滋病初期什么症状| 乌龟属于什么动物| 什么是薪级工资| 什么是荨麻疹| 七九年属什么生肖| 跌宕起伏什么意思| 婴儿泡奶粉用什么水好| 水为什么会结冰| 经期适合吃什么水果| 甲亢吃什么药好| 青岛是什么省| 清宫手术后需要注意什么| 拔牙后吃什么食物最好| 备孕检查什么项目| 成人发烧吃什么退烧药| 宝宝不吃奶是什么原因| 什么是癔症| 失眠多梦用什么药| 种马文是什么意思| 元旦送什么礼物好| 雅漾喷雾有什么功效| 鼠冲什么生肖| 长一智的上一句是什么| 小月子是什么意思| 细菌感染有什么症状表现| 铅是什么东西| 烫伤后擦什么药好得快| 9月20日什么星座| 螃蟹苦是什么原因| 指压板有什么功效| 冷鲜肉和新鲜肉有什么区别| 蟾蜍是什么| 糖尿病适合喝什么饮料| 刘诗诗是什么样的人| 小孩睡觉流口水是什么原因| 争奇斗艳的斗是什么意思| 怀孕吃火龙果对胎儿有什么好| 精血亏虚吃什么中成药| 女人右眼皮跳是什么预兆| 蜘蛛痣是什么原因引起的| 胸疼挂什么科| 荨麻疹用什么药好| 面基是什么意思| 艾滋病是什么症状| 心脏痛吃什么药效果好| Mo什么元素| 化验血常规能查出什么| 情人节送什么花| 甲苯是什么东西| 布洛芬的副作用是什么| 吃姜有什么好处| 增加免疫力吃什么| 为什么说肺结核是穷人病| 小孩拉肚子应该吃什么食物好| 龙涎是什么| 腿上长水泡是什么原因| hpv81低危型阳性是什么意思| t11椎体在什么位置| 前三个月怀孕注意什么| 如意什么意思| 白油是什么| 血脂高胆固醇高吃什么食物最好| 笑对人生是什么意思| 甲低有什么症状表现| essential是什么意思| 张国荣什么时候去世的| 降血脂有什么好办法| 王姓为什么出不了皇帝| 胃食管反流病吃什么药| 跟着好人学好人下句是什么| 点痣去医院挂什么科| 胃胀吃什么药效果最好| 讲师是什么级别| 石龙子吃什么| 什么关系| 生理期吃什么比较好| 世界上笔画最多的字是什么字| 左室舒张功能减低是什么意思| 喝完酒早上吃什么好| 亦字五行属什么| 追悔莫及什么意思| 肚脐眼下面疼是什么原因| 老放臭屁是什么原因| 小孩办理护照需要什么材料| 5月23号是什么星座| 背疽是什么病| 欣喜若狂是什么意思| 扔枕头有什么忌讳吗| 经常嗓子疼是什么原因| 咖啡不能和什么一起吃| 智能手环什么品牌好| 纺织厂是做什么的| 董五行属什么| 舌苔黄腻吃什么药| 肺钙化灶是什么意思| 什么样的刘胡兰| 树敌是什么意思| 外公的妈妈叫什么| 百度
Sitemap
Data @ Monzo

News, special project updates, hiring posts and more from the Data Science, Analytics and Machine Learning team at Monzo Bank

王者荣耀S8赛季新段位叫什么 S8赛季段位怎么

It happens at least once in the lifetime of every data leader or practitioner. You get asked to estimate the ROI of your work, team or of hiring one more person. If you’re lucky you get away with a vague response around making the company more data driven. If not, you may find yourself trying to estimate the $ value of each data project pulling more hairs out for each one.

Your job: make them understand so you get what you want.

People much smarter than me have shared their takes on how to measure analytical work

  • Benn from Mode Analytics thinks that time to complete an analysis is the best measure
  • Barry from Hex suggests that your stakeholders should be the ones advocating for your work and telling the ROI story

I have another take (hold onto your hat and glasses as we’re about to get technical). Next time someone asks about data ROI you show them this formula and hold your breath hoping they’re not running for the hills.

Zoom image will be displayed

Convinced? Probably not. Allow me to elaborate and then let’s put it into practice.

Not all ROI is created equal

In the article: The most crucial mind shift in a data role? Focus on impact I make the case that data people should focus on impact instead of outputs, align themselves with a key KPI and not forget about the world outside of data.

There are five roles in a modern data team. The closer you’re to the left, the closer you’re to systems. The closer to the right, the closer you are to directly impacting a KPI. To keep it simple I’ll classify these roles into Systems People and KPI People.

You should think very differently about impact depending on which role you’re in.

Zoom image will be displayed

Consider a concept we’ll call ? degrees. ? represents how many degrees away you’re from impacting a top-level KPI.

Here are some examples to bring it to life

? = 0
0?? A Machine Learning Scientist ships a model that reduces fraud →
??????

? = 1
0?? A Data Scientist runs an A/B test to improve signup rate →
1?? An Engineer implements the change →
??????

? = 2
0?? An Analytics Engineer improves a data model for the A/B test →
1?? A Data Scientist runs an A/B test →
2?? An Engineer implements the change →
??????

? = 3
0?? A Data Engineer improves dbt →
1?? An Analytics Engineer improves… →
2?? A Data Scientist… →
3?? An Engineer… →
??????

You get the point.

The further you’re to the right the more your work should speak for itself through directly impacting a top-line KPI. The further you’re to the left the more the more you have impact by making data consumers downstream more efficient.

Good work, bad work

Why a Machine Learning Scientist owning a metric is good thing

You have positioned yourself at ? = 0 by having built and deployed a fraud detection machine learning model. Using the ROI formula this makes your job simple: Optimise impact (??) and minimise time spent (??). If you do well, your boss can tell their boss that they need more headcount and easily point to what the business impact will be.

Zoom image will be displayed

Now we have to consider the impact from other teams (??). Let’s say that there’s a ?? = 40% chance the Data Scientist will make a useful recommendation the product team can use and ?? = 50% chance this will make it onto the product team’s roadmap. Your work is now diluted down to 20%.

But where does that leave our Systems People friends who always have more steps in-between their work and the KPI? Are they less valuable?

Nope, they’re just as valuable but their sway is somewhere else.

Why an Analytics Engineer working on few end users may be problematic

You’re an Analytics Engineer and make a data model easier to use. This data model is used by one Data Scientist and they are ?? = 10% faster because of your work. They use it to run an A/B test and make a recommendation that improves the signup flow.

Zoom image will be displayed

So far so good. Your work has made life easier for someone. You clearly had an end user in mind and the product team is working towards a KPI — those are all good things.

But your work only impacts one person (?? = 1) and the time cost (??) of your work is high. Is this impactful work? Maybe if you spend a week on it. If you spend a month, probably not.

If you find yourself working in a data role where it’s often hard to gauge what the impact of your work is and the number of data consumers that benefit from your work is low think about if you’re working on the most impactful problems

How else could this Analytics Engineer have spent their time?

Analytics Engineers at scale

You’re an Analytics Engineer who makes a core data model that five data scientists (?? = 5) use every day ?? = 10% easier to use. You’ve just scaled yourself 5x compared to the previous example.

Zoom image will be displayed

If you’re a Systems Person constantly evaluate how your work impacts downstream consumers (??), how many consumers you have (??) and how much time you spend (??).

Why you should invest in your data tools

You’re a Data Engineer who makes dbt 5% faster for everyone in the data team. Now Analytics Engineers work faster and improve more data models. Data Scientists and Analysts benefit from higher quality data models and the product team can implement more ideas.

Zoom image will be displayed

You’ve just made life better for 5 Analytics Engineers and 15 Data Scientists. If you’ve just improved dbt performance by 5% you’ve had a massive impact.

Does this then instead mean that Systems People always have the most impact? Not necessarily. It all comes down to the infamous equation I introduced in the beginning. If you’re an Analytics Engineer that improves a data model which increases the efficiency of 3 Analysts by 30%, that’s as valuable as a Data Engineer improving the speed of dbt for 9 people by 10%. It’s obvious when presented this way but in my experience this is not always how data teams think.

At Monzo where I work we’ve codified the behaviour of the Systems People as a core value and think everyone in the data team has a role to play. We call it Act as force multipliers. (pssst: we’re hiring across many data roles)

OK, I buy the Graph Theory stuff. Now what?

Great! Here’s how you should think

  • Systems People: Focus on maximising the number of consumers of your work (??) and on the impact your work has on each of them ( ??)
  • KPI People: Focus on reducing the steps between yourself and the KPI (?) and work on the highest ROI opportunities (??)

What’s really exciting is that all the work above is part of the same equation. If KPI People get better at picking higher ROI opportunities and reduce the steps in-between themselves and the KPI, the impact of upstream work from the Systems People increases proportionally.

Here are some practical tips to what you can do.

Zoom image will be displayed

Now, what? Should you show the formula to your stakeholders or actually put numbers to it? Probably not. But you can use it to think about how your work can have the highest possible impact and which strings you can pull.

Remember that everyone plays a role.

Data Scientists and Data Analysts work faster if they have high quality data and good data models. Analytics and Data Engineers have multitudes of impact if their data models are used by many.

If you’re looking for a data role where you can have impact we’re hiring across many data roles at Monzo.

I write regularly about all things data on mikkeldengsoe.substack.com

--

--

Data @ Monzo
Data @ Monzo

Published in Data @ Monzo

News, special project updates, hiring posts and more from the Data Science, Analytics and Machine Learning team at Monzo Bank

Responses (1)

独一无二是什么生肖 经常掏耳朵有什么危害 上天眷顾是什么意思 荨麻疹吃什么药好得快 乌龟肺炎用什么药
什么米减肥效果好 细菌是什么生殖 草字头加青读什么 男生的鸡鸡长什么样 小沈阳属什么生肖
一个大一个小念什么 教唆什么意思 感冒了吃什么饭菜合适 做梦数钱是什么意思啊 怡什么意思
小孩手足口病吃什么食物好 忏悔是什么意思 低血钾是什么病 为什么会有阴虱子 风热感冒吃什么药最快
坐围和臀围有什么区别hcv8jop5ns3r.cn 古代人用什么刷牙hcv9jop3ns5r.cn 丹参粉有什么作用和功效hcv9jop7ns3r.cn mango是什么意思hcv8jop4ns1r.cn 避孕药什么时候吃hcv8jop4ns5r.cn
为什么掉头发hcv8jop8ns4r.cn 白蛋白是什么hcv8jop5ns6r.cn 人为什么要吃盐hcv7jop5ns5r.cn 财大气粗是什么意思hcv7jop5ns3r.cn hcg下降是什么原因hcv8jop2ns1r.cn
蛋白粉有什么功效hcv9jop8ns0r.cn 六安瓜片属于什么茶hcv8jop7ns1r.cn 妊娠是什么意思啊hcv8jop9ns9r.cn spiderking是什么牌子hcv8jop8ns9r.cn 七匹狼男装是什么档次hcv9jop2ns5r.cn
火花塞坏了有什么症状mmeoe.com 为什么饿了会想吐0735v.com 农业户口和非农业户口有什么区别hcv8jop1ns8r.cn 转氨酶偏低是什么原因naasee.com 血压低吃什么药见效快hcv9jop8ns1r.cn
百度